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Background and Rationale
Access to otolaryngologists is limited in rural and

remote areas, where most ear disease screening is

performed by community health nurses. Artificial

intelligence (AI) using machine learning and neural

networks has the potential to support untrained health

workers triage ear disease from otoscopic images.

Our objective was to determine the accuracy of AI to

diagnose ear disease from otoscopic images.

Methods
A literature search was conducted of MEDLINE, EMBASE, Pubmed and Google

Scholar databases, for articles that a) used otoscopic eardrum images, b) applied

machine learning or convolutional neural networks, and c) used primary care

practitioners or otolaryngologists as the ground-truth (gold standard). Ear disease

categories: normal, acute otitis media (AOM), otitis media with effusion (OME),

perforation, wax impaction and tympanosclerosis (TS).

Discussion
Current research demonstrates that AI can accurately

interpret otoscopic images comparable to clinicians. The

possibility of harnessing this technology to improve safety and

efficiency, and to anticipate needs of care in rural and remote

areas is promising. However, these methods require rigorous

evaluation and replication before widespread adoption into

clinical practice. Future applications may include point-of-care

tools to enable community health workers triage eardrums

instantaneously and initiate specialist referral for high-risk

patients.

Results
Nine of 1,544 articles were included, comprised of 13,398 otoscopic images

(12,541 used for training/validation and 857 used for testing).
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Author (year) Diagnoses ML / CNN Ground-truth

Cha (2019)1 normal, perforation, TS, wax Inception V3, 

ResNet

Otolaryngologist

Livingstone (2019)2 normal, perforation, AOM, OME, 

wax, 

Google Cloud 

Vision

Otolaryngologist

Senaras (2019)3 abnormal Inception V3 Otolaryngologist 

Seok (2019)4 normal, perforation ResNet Otolaryngologist

Kasher (2018)5 AOM Inception V3, 

MobileNets

Primary care 

practitioner

Tran (2018)6 AOM, OME MTJSRC Otolaryngologist

Myburgh (2016)7 normal, AOM, OME, wax Matlab Otolaryngologist

Shie (2014)8 OME Adaboost Otolaryngologist

Mironica (2011)9 AOM, normal SVM Otolaryngologist

Diagnosis No. of 

studies

Accuracy (95%CI)

Normal 5 87.7% (84.8 – 90.3%)

AOM 5 85.5% (82.5 – 88.1%)

OME 4 88.7% (85.2 – 91.6%)

Perforation 3 85.1% (80.4 – 89.1%)

Wax 3 84.4% (78.5 – 89.3%)

Affiliations
1Faculty of Medicine, University of Sydney, Sydney, Australia
2Department of Otolaryngology – Head and Neck Surgery, Westmead Hospital, 

Contact: ahab1907@uni.sydney.edu.au

Table 2. Meta-analysis of diagnostic accuracies for common clinical findings.. 

Table 1. Characteristics, methods and outcome measures of included studies. 

Abbreviations: multitask joint sparse representation based classification (MTJSRC), support vector 

machines (SVM)


